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Abstract. Pollock conjectures that every natural number can be expressed as a
sum of at most five tetrahedral numbers. It remains unknown whether this con-
jecture holds, and Watson proved that sums of at most eight tetrahedral numbers
suffice to express all natural numbers.
We devise two algorithms to decompose integers as sums of few tetrahedral num-
bers. Our first algorithm can decompose any given integer 𝑛 into a sum of at most
eight tetrahedral numbers in 𝑂(log3 𝑛∕ log log 𝑛) time with probability 1−1∕𝑛Ω(1),
assuming the extended Riemann hypothesis. Our second algorithm can determin-
istically decompose all integers in [1,𝓁] into sums of the fewest possible tetrahe-
dral numbers in 𝑂(𝓁) time using 𝑂(𝓁2∕3) space, assuming a conjecture over the
integers in [1,𝓁] and the Pollock’s conjecture on tetrahedral numbers. While the
conjectures for all numbers is unproven, its validity for all numbers in [1,𝓁] can
be verified in 𝑂(𝓁) time.
As a result of our second algorithm, we can show that the Pollock’s conjecture
holds for all natural numbers up to 2.82 × 1021. This significantly improves upon
the previous known bound of 3.77 × 1015.
Keywords: Pollock’s conjecture · image set of cubic congruences · empirical ver-
ification

1 Introduction

Pollock conjectured in 1851 that every natural number can be expressed as a sum of at
most five tetrahedral numbers [9], where for each 𝑖 ≥ 1 the 𝑖th tetrahedral number 𝑇𝑖is defined as

(

𝑖 + 2
3

)

In 1928, Yang proved that sums of at most nine tetrahedral numbers suffice to express all
natural numbers [16], using Legendre’s three-square theorem [7]. Subsequently, James
proved in 1934 that sums of at most eight tetrahedral numbers suffice to express all
⋆ This paper is not eligible for the best student paper award.
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sufficiently large natural numbers [5], using a method due to Landau [6]. Then, in 1935,
Hua generalized James’ result by showing that, for each integer 𝐷, sums of at most eight
values in the form of

(𝑖 + 1)𝐷 + 𝑇𝑖

suffice to express all sufficiently large natural numbers. Watson further strengthened
James’ and Hua’s results in 1952, removing the requirement for the input integers to
be sufficiently large [15]. In Watson’s proof, the key observation is that the intersection
of the image sets of some cubic congruences is non-empty (implicitly) using Hensel’s
lemma [12].

In this paper, we strengthen Watson’s result by showing that this intersection is not
only non-empty but also comprises a constant fraction of all possible incongruent values,
as detailed in Lemma 4. We then use this finding to devise an algorithm to decompose
any given integer 𝑛 into at most eight tetrahedral numbers, as stated in Theorem 1. The
time complexity analyses in this paper are conducted on the standard model, WordRAM,
where basic arithmetic operations over 𝑂(log 𝑛)-bit operands take 𝑂(1) time.
Theorem 1. There exists an algorithm capable of representing an integer 𝑛 as a sum
of at most eight tetrahedral numbers in 𝑂(log3 𝑛∕ log log 𝑛) time with probability 1 −
1∕𝑛Ω(1), assuming the extended Riemann hypothesis (ERH). This assumption can be
removed if the decomposition of integers into three squares, a building block of this
algorithm, can be done efficiently without assuming ERH.

In addition to the mathematical attempts to prove the Pollock’s conjecture, there have
been computational efforts. In what follows, 𝑘-numbers refer to integers that cannot be
expressed as sums of fewer than 𝑘 tetrahedral numbers, but can be expressed as sums of
exactly 𝑘 tetrahedral numbers, following the notations in [3,1].

Salzer and Levine in 1958 [13] verified that the Pollock’s conjecture holds for all
integers in the closed interval [1, 106]. They reported that each integer in [343868, 106]
is a 𝑘-number for some 𝑘 ≤ 4 and provided a list of 241 5-numbers. Deng and Yang in
1994 [3] improved the upper bound of the computation from 106 to 109 and reported
that no new 5-number was found in their computation. It may be worth noting that, if
there exists a 𝑘-number 𝑛 for some 𝑘 ≥ 6 and 𝑛−𝑛∕𝑘 > 343, 867, then there exists a new
5-number. Hence, reporting no new 5-number implies no new 𝑘-number for 𝑘 ≥ 5 was
found. Chou and Deng in 1997 [1] further improved the upper bound of the computation
to 4 × 1010. Again, no new 5-number was found. Given these empirical results, it is
conjectured in [3,1] that 343,867 is the largest 5-number. Furthermore, combining the
above empirical result and a technique introduced in [3,1], they show that every positive
integer up to 3, 771, 207, 667, 368, 141 is a 𝑘-number for some 𝑘 ≤ 5. This gives the
known best upper bound of integers for which the Pollock’s conjecture holds.

As our second contribution in this paper, we devise an algorithm that can express
all integers in [1,𝓁] as sums of the fewest possible tetrahedral numbers in 𝑂(𝓁) time
and 𝑂(𝓁2∕3) space, assuming a conjecture over integers in [1,𝓁] and the Pollock’s con-
jecture on tetrahedral numbers. This result is formally stated in Theorem 2. Though the
conjectures are unproven, it can be verified in 𝑂(𝓁) time. A similar algorithm to express
all integers in [1,𝓁] as sums of the fewest possible tetrahedral numbers with the same
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time complexity was claimed in [1], but the analysis is based on the following heuris-
tic. For each 4-number 𝑛, let 𝑟(𝑛) be the rank of the smallest tetrahedral number 𝑇𝑟(𝑛)such that 𝑛 − 𝑇𝑟(𝑛) is a 3-number. Their linear-time algorithm requires the assumption
that lim𝑛→∞ 𝑟(𝑛) = 𝑂(1). They also reported that 𝑟(𝑛) ≤ 68 for all 4-numbers less than
or equal to 4 × 1010, which we found to be incorrect. Indeed, there are 68 4-numbers
𝑛 ≤ 4 × 1010 with 𝑟(𝑛) > 68, as listed in Table 2, and the largest 𝑟(𝑛) among them is 98.
Theorem 2. There exists a deterministic algorithm capable of representing an integer
𝑛 as a sum of the fewest possible tetrahedral numbers in 𝑂(𝓁) time and 𝑂(𝓁2∕3) space,
assuming that the number of the 4-numbers 𝑛 in [1,𝓁] whose 𝑟(𝑛) = 𝑂(log 𝑛) is at least
𝓁 − 𝓁1∕3 and the Pollock’s conjecture on tetrahedral numbers. This assumption over
the integers in [1,𝓁] is unproven, but it can be empirically verified in 𝑂(𝓁) time with
probability 1 − 1∕𝓁Ω(1).

As a result of our second algorithm, we empirically verify that for all integers up to
1014 there exists no 5-number other than the known 241 ones. Together with an aux-
iliary computation, all integers up to 2.82 × 1021 are 𝑘-numbers for some 𝑘 ≤ 5. This
gives a new upper bound on the integers for which the Pollock’s conjecture holds and
significantly improves upon the previous known bound. As a remark,
Theorem 3. The Pollock’s conjecture on tetrahedral numbers holds for all integers up
to

2.82 × 1021.

Paper Organization. In Section 2, we strengthen Watson’s result by showing that the
intersection of the image sets of some cubic congruences comprises a constant frac-
tion of all possible incongruent values. Based on this findings we devise an efficient
randomized algorithm to represent any given integer 𝑛 as a sum of at most eight tetra-
hedral numbers. Then, in Section 3, we devise a linear-time algorithm that can express
all integers in [1,𝓁] as sums of the fewest possible tetrahedral numbers in 𝑂(𝓁) time
and 𝑂(𝓁2∕3) space, assuming a conjecture over integers in [1,𝓁]. We also present how
to empirically verify this unproven conjecture over the integers in [1,𝓁] in 𝑂(𝓁) time.
Finally, in Section 4, we draw conclusions from our work.

2 Expressing Integers as Sums of At Most Eight Tetrahedral
Numbers

We will prove Theorem 1 in this section. Our techniques are mainly based on Watson’s
techniques [15], Hensel’s Lemma [12], and Chinese Remainder Theorem [12]; however,
the key lemma (Lemma 4) that we obtain is very different from those lemmas in Watson’s
paper [15]. Lemma 4 and some simple arguments together yield a proof for Theorem 1.
Lemma 1 (A restatement of [15, Lemma 3]). Let 𝑛, 𝑚 be positive integers so that
(𝑚, 6) = 1 and 𝑚 is a multiple of some square number. If 𝑚 and 𝑛 satisfy

(1
8
+ 9

125

)

𝑚3 < 𝑛 < 1
4
𝑚3, (1)
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then there exist integers 𝑥, 𝑦, 𝑘 so that 0 ≤ 𝑥, 𝑦 < 3𝑚∕5, 0 ≤ 𝑘 < 𝑚2∕8, and

6𝑛 = 𝑥3 − 𝑥 + 𝑦3 − 𝑦 + 1
8
(

6𝑚3 − 24𝑚 + 6𝑚(8𝑘 + 3)
)

. (2)
By Legendre’s three-square theorem [7], 8𝑘 + 3 can be expressed as a sum of three

squares for any integer 𝑘 ≥ 1. Hence, we can rewrite Eq. (2) as, for some 𝑢, 𝑣,𝑤 ≥ 0,
6𝑛 = 𝑥3 − 𝑥 + 𝑦3 − 𝑦 + 1

8
(

6𝑚3 − 24𝑚 + 6𝑚(𝑢2 + 𝑣2 +𝑤2)
)

= 6𝑇 (𝑥) + 6𝑇 (𝑦) + 1
8

∑

𝑥∈{𝑢,𝑣,𝑤}
2𝑚3 − 8𝑚 + 6𝑥2𝑚

= 6𝑇 (𝑥) + 6𝑇 (𝑦) +
∑

𝑥∈{𝑢,𝑣,𝑤}

(𝑚 + 𝑥
2

)3
− 𝑚 + 𝑥

2
+
(𝑚 − 𝑥

2

)3
− 𝑚 − 𝑥

2

= 6𝑇 (𝑥) + 6𝑇 (𝑦) +
∑

𝑥∈{𝑢,𝑣,𝑤}
6𝑇

(𝑚 + 𝑥
2

)

+ 6𝑇
(𝑚 − 𝑥

2

)

Because 𝑢2+𝑣2+𝑤2 ≡ 3 (mod 8), it follows that 𝑢, 𝑣,𝑤 are odd integers. Addition-
ally, since 0 ≤ 𝑘 < 𝑚2∕8, we have 0 ≤ 𝑢, 𝑣,𝑤 ≤ 𝑚. Combining that 𝑚 is an odd integer,
both (𝑚+ 𝑥)∕2 and (𝑚− 𝑥)∕2 for 𝑥 ∈ {𝑢, 𝑣,𝑤} are non-negative integers. Hence, 𝑛 can
be expressed as a sum of at most eight tetrahedral numbers.

To implement the above decomposition, we need the following building blocks:
1. Computing a proper 𝑚.
2. Computing 𝑥 and 𝑦 such that 0 ≤ 𝑥, 𝑦 < 3𝑚∕5 and satisfying the congruence

relation
6𝑛 ≡ 𝑥3 − 𝑥 + 𝑦3 − 𝑦 (mod 𝑚)

3. Representing 8𝑘 + 3 as a sum of three squares.
In Sections 2.1 to 2.3, we show how to realize these building blocks in𝑂(log3 ∕ log log 𝑛)

time, thereby proving Theorem 1.

2.1 Computing a proper 𝒎
In this section, we present how to compute a proper 𝑚 in 𝑂(log 𝑛) time.
Lemma 2. For every sufficiently large 𝑛, there exists an integer

𝑚 = 5𝑎 ⋅ 7𝑏 ⋅ 11𝑐 for some 𝑎 ≥ 2, 𝑏 ≥ 0, 𝑐 ≥ 0

so that Eq. (1) holds.

Fig. 1. An illustration of 𝐼 , in which the dots represent the reals in 𝐼 .
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Proof. Let
𝐼 ∶=

{

5𝑎 ⋅ 7𝑏 ⋅ 11𝑐 ∶ 𝑎, 𝑏, 𝑐 are integers in [−4, 4]
}

∩ [1, 5],

as depicted in Fig. 1. It can be verified that 1, 5 ∈ 𝐼 and every two consecutive reals in
𝐼 have a ratio within the range (1, 3

√

5∕4). Hence, for any real 𝛼 ∈ [1, 5], the interval
[𝛼, 3

√

5∕4𝛼] contains at least one real number in 𝐼 .
To find an 𝑚 satisfying Eq. (1), it suffices to have an 𝑚 such that

3
√

4𝑛 < 𝑚 < 3
√

5𝑛.

As 𝑛 is sufficiently large, we can find some 𝑎 ≥ 6 such that 𝓁 = 5𝑎 ⋅ 74 ⋅ 114 and
3
√

4𝑛∕𝓁 ∈ [1, 5].

Let 𝛼 = 3
√

4𝑛∕𝓁. Then [ 3
√

4𝑛∕𝓁, 3
√

5𝑛∕𝓁] = [𝛼, 3
√

5∕4𝛼]. By the property of 𝐼 , [𝛼, 3
√

5∕4𝛼]
contains a real of the form 5𝑎 ⋅ 7𝑏 ⋅ 11𝑐 for some 𝑎, 𝑏, 𝑐 ≥ −4. We are done. ⊓⊔

The 𝑚 mentioned in Lemma 2 can be obtained by finding the 𝓁 mentioned in the
proof of Lemma 2 followed by checking whether 𝓁𝑥 is a proper 𝑚 by scanning all reals
in 𝑥 ∈ 𝐼 . 𝓁 can be found in 𝑂(log 𝑛) time by starting 𝓁′ with 56 ⋅ 74 ⋅ 114 and iteratively
multiplying 𝓁′ with 5 until 𝓁′ satisfies the need of 𝓁. Since 𝐼 contains only 47 real
numbers, checking whether 𝓁𝑥 is a proper 𝑚 can be done in 𝑂(1) time.
Remark. One may wonder why not pick an 𝑚 = 52 ⋅ 𝑝 for some prime 𝑝. The reason is
that the running time of the above is faster than using 𝑚 in the form 𝑚 = 52 ⋅ 𝑝.

Here are details. It is shown in [4, p. 494] that, for every real 𝜀 > 0,
lim
𝑛→∞

𝜋((1 + 𝜀)𝑛) − 𝜋(𝑛)
𝑛∕ log 𝑛

= 𝜀.

Then, we sample an integer uniformly at random from the interval [ 3
√

4𝑛∕25, 3
√

5𝑛∕25]
and, using Miller-Rabin’s algorithm [10], test whether the sampled integer is a prime
in 𝑂(log2 𝑛) time. To have the failure probability bounded by the claimed 1∕𝑛Ω(1), we
require to sample 𝑂(log2 𝑛) integers in the interval. Hence, the total running time is
𝑂(log4 𝑛), exceeding our budget for the time complexity.

2.2 Computing 𝒙 and 𝒚

In this section, we present how to compute 𝑥 and 𝑦 that satisfy Lemma 1 in 𝑂(log2 𝑛)
time with failure probability bounded by 1∕𝑛Ω(1).

We extend Lemma 1 from [15] to Lemma 3, where Lemma 1 of [15] is equivalent
to setting 𝑟 = 1 in Lemma 3.
Lemma 3. Let 𝑝 be a prime number at least 5 and 𝑟 be a positive integer. If 𝑎 ≢ 0
(mod 𝑝), the image set 𝑟 of the congruence

𝑥3 + 𝑎𝑥 (mod 𝑝𝑟)

contains exactly 𝑝𝑟−1|1| incongruent values where |1| = ⌊(2𝑝 + 1)∕3⌋; that is,

|𝑟 ∶= {𝑥3 + 𝑎𝑥 (mod 𝑝𝑟) ∶ 𝑥 ∈ [𝑝𝑟]}| = 𝑝𝑟−1|1|.
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Proof. We will use Hensel’s Lemma [12, Theorem 4.15] to have a many-to-one mapping
from the image set 𝑟 to 1. Let 𝑓𝑛(𝑥) = 𝑥3 + 𝑎𝑥 − 𝑛. We study in the following claim
whether there exists a solution 𝑣 of 𝑓𝑛(𝑥) ≡ 0 (mod 𝑝) such that 𝑓 ′

𝑛(𝑣) ≢ 0 (mod 𝑝).
Claim. For every 𝑛 ∈ 1, there exists a value 𝑣 ∈ [𝑝] such that

𝑓 ′
𝑛(𝑣) ≢ 0 (mod 𝑝).

Proof. We classify 𝑛 ∈ 1 into the following three categories, where 1,𝑡 for each 𝑡 ∈ [3]
is the collection of all the values 𝑛 ∈ [𝑝] such that the number of incongruent solutions to
𝑓𝑛(𝑥) is exactly 𝑡. Because 𝑝 is a prime, 𝑓𝑛(𝑥) ≡ 0 (mod 𝑝) has at most three incongruent
solutions. Hence, 1 = 1,1 ∪ 1,2 ∪ 1,3.

– If 𝑛 ∈ 1,1, then for some 𝑣0 ∈ [𝑝] we have
𝑓𝑛(𝑥) ≡ (𝑥 − 𝑣0)𝑔(𝑥) (mod 𝑝)

There are two subcases to discuss:
∙ Case I: 𝑔(𝑣0) ≡ 0 (mod 𝑝). In this case, 𝑓𝑛(𝑥) ≡ (𝑥 − 𝑣0)2(𝑥 − 𝑡) (mod 𝑝).

Since 𝑓𝑛(𝑥) does not have the quadratic term, −𝑡 − 2𝑣0 ≡ 0 (mod 𝑝). Since
𝑎 ≢ 0 (mod 𝑝), 𝑣0 ≢ 0 (mod 𝑝). Consequently, 𝑡 ≢ 𝑣0 (mod 𝑝). Thus, we
have 𝑛 ∈ 2, a contradiction. Such a subcase cannot happen.

∙ Case II: 𝑔(𝑣0) ≢ 0 (mod 𝑝). Hence, 𝑓 ′
𝑛(𝑣0) ≡ 𝑔(𝑣0) + (𝑣0 − 𝑣0)𝑔′(𝑣0) ≢ 0

(mod 𝑝), as desired.
– If 𝑛 ∈ 1,2, then for some 𝑣0 ≢ 𝑣1 (mod 𝑝) we have

𝑓𝑛(𝑥) ≡ (𝑥 − 𝑣0)2(𝑥 − 𝑣1).

Since 𝑓𝑛(𝑥) does not have the quadratic term, −2𝑣0 ≡ 𝑣1 (mod 𝑝). Since 𝑎 ≢ 0
(mod 𝑝), 𝑣0 ≢ 0 (mod 𝑝). Thus, 𝑣0 ≢ −𝑣1 (mod 𝑝). The incongruent solutions to
𝑓 ′
𝑛(𝑥) ≡ 0, if they exist, must be 𝑣′ and −𝑣′ for some 𝑣′ ∈ [𝑝]. Since 𝑣0 ≢ −𝑣1, at

least one of them is not a solution to 𝑓 ′
𝑛(𝑥), as desired.

– If 𝑛 ∈ 1,3, then for some incongruent values 𝑣0, 𝑣1, 𝑣2 ∈ [𝑝] we have
𝑓𝑛(𝑥) ≡ (𝑥 − 𝑣0)(𝑥 − 𝑣1)(𝑥 − 𝑣2).

Since 𝑓 ′
𝑛(𝑥) ≡ 0 (mod 𝑝) has at most two incongruent solutions, at least one value

𝑣′ ∈ {𝑣0, 𝑣1, 𝑣2} satisfies 𝑓 ′
𝑛(𝑣

′) ≢ 0 (mod 𝑝), as desired. ▪

The above claim ensures that, for every 𝑛 ∈ 1, there exists 𝑣 ∈ [𝑝] such that
{

𝑓𝑛(𝑣) ≡ 0 (mod 𝑝)
𝑓 ′
𝑛(𝑣) ≢ 0 (mod 𝑝)

By Hensel’s Lemma [12, Theorem 4.15], there exists an unique 𝑡 ∈ [𝑝] such that
𝑣+𝑡𝑝 is a solution to 𝑓𝑛(𝑥) ≡ 0 (mod 𝑝2). Since 𝑓 ′

𝑛(𝑣+𝑡𝑝) ≡ 𝑓 ′
𝑛(𝑣) (mod 𝑝). Inductively,

we get 𝑛 ∈ 𝑟 as well. Conversely, for every 𝑛′ ∈ 𝑟, (𝑛′ mod 𝑝) ∈ 1.
For each 𝑛′ ∈ [𝑝𝑟], its analysis is the same as 𝑛′ mod 𝑝. Thus, |𝑟| = |1|𝑝𝑟−1.

In [15, Lemma 1], |1| = ⌊(2𝑝 + 1)∕3⌋ is shown. This completes the proof. ⊓⊔
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By applying the Pigeonhole Principle and Chinese Remainder Theorem, we derive
the following lemma:
Lemma 4. Let 𝑚 = 𝑝𝑟11 𝑝

𝑟2
2 ⋯ 𝑝𝑟𝑡𝑡 where 𝑝𝑖 are distinct prime numbers at least 5 and 𝑟𝑖

are positive integers for all 𝑖 ∈ [𝑡]. If (𝑚, 𝑎) = 1, for every 𝑛 ∈ [𝑚] the congruence

𝑥3 + 𝑎𝑥 + 𝑦3 + 𝑎𝑦 ≡ 𝑛 (mod 𝑚)

is soluble by setting 𝑥3 + 𝑎𝑥 ≡ 𝑛′ (mod 𝑚) for every 𝑛′ ∈  where  ⊂ [𝑚] and

|| ≥
∏

𝑖∈[𝑡]

(

2⌊(2𝑝𝑖 + 1)∕3⌋ − 𝑝𝑖
)

𝑝𝑟𝑖−1𝑖 .

Proof. By Lemma 3 (where we require 𝑎 ≢ 0 (mod 𝑝𝑟𝑖𝑖 )), for each 𝑖 ∈ [𝑡], the image sets
of 𝑥3+𝑎𝑥 (mod 𝑝𝑟𝑖𝑖 ) and 𝑦3+𝑎𝑦 (mod 𝑝𝑟𝑖𝑖 ) both contain ⌊(2𝑝𝑖+1)∕3⌋𝑝𝑟𝑖−1𝑖 incongruent
values. By the Pigeonhole Principle, for each 𝑖 ∈ [𝑡], there exist at least

(

2⌊(2𝑝𝑖 + 1)∕3⌋ − 𝑝𝑖
)

𝑝𝑟𝑖−1𝑖 (3)
incongruent values 𝑠𝑖 in the image set of 𝑥3 + 𝑎𝑥 (mod 𝑝𝑟𝑖𝑖 ) such that 𝑦3 + 𝑎𝑦 ≡ 𝑛 − 𝑠𝑖
(mod 𝑝𝑟𝑖𝑖 ) is soluble.

For each 𝑖 ∈ [𝑡], let 𝛼𝑖 denote a solution to 𝑥3+ 𝑎𝑥 ≡ 𝑠𝑖 (mod 𝑝𝑟𝑖𝑖 ), and let 𝛽𝑖 denote
a solution to 𝑦3 + 𝑎𝑦 ≡ 𝑛 − 𝑠𝑖 (mod 𝑝𝑟𝑖𝑖 ). Since 𝑝𝑖 for all 𝑖 ∈ [𝑡] are distinct primes,
by the Chinese Remainder Theorem for each 2𝑡-tuple (𝛼1, 𝛼2,… , 𝛼𝑡, 𝛽1, 𝛽2,… , 𝛽𝑡)), we
can find a unique (𝛼, 𝛽) such that for all 𝑖 ∈ [𝑡]

𝛼 ≡ 𝛼𝑖 and 𝛽 ≡ 𝛽𝑖 (mod 𝑝𝑟𝑖𝑖 ).

Thus, for any choices of 𝑠𝑖 for 𝑖 ∈ [𝑡], we can find a 2-tuple (𝛼, 𝛽) as a solution to
𝑥3 + 𝑎𝑥 + 𝑦3 + 𝑎𝑦 ≡ 𝑛 (mod 𝑚).

Note that, for each 𝑖 ∈ [𝑡], the number of choices of 𝑠𝑖 is lower-bounded by Eq. (3).
Each possible 𝑡-tuple (𝑠1, 𝑠2,… , 𝑠𝑡) determines a unique 𝑠† (mod 𝑚) such that

𝑠† ≡ 𝑠𝑖 (mod 𝑝𝑟𝑖𝑖 ) for 𝑖 ∈ [𝑡].

Let  be the collection of all such 𝑠†s. Thus  has size at least the product of Eq. (3) for
all 𝑖 ∈ [𝑡]. We are done. ⊓⊔

Thus, by Lemma 4, we can sample an 𝑛′ ∈  with success probability > (1∕3)3 − 𝜀
for some small constant 𝜀 > 0 because the 𝑚 we picked in Lemma 2 has at most three
prime factors. Given 𝑛′, to check whether it is valid it suffices to find a solution to 𝑥3 +
𝑎𝑥 ≡ 𝑛′ (mod 𝑝) and 𝑦3 + 𝑎𝑦 ≡ 𝑛 − 𝑛′ (mod 𝑝) for each 𝑝 ∈ {5, 7, 11}. The reason
is stated in the proof of Lemma 4. As each 𝑝 ∈ {5, 7, 11} is a constant, checking the
validity of 𝑛′ takes 𝑂(1) time for each random guess and 𝑂(log 𝑛) time to succeed with
probability 1 − 1∕𝑛Ω(1).

Given a valid 𝑛′, we need to find a solution to 𝑥3 + 𝑎𝑥 ≡ 𝑛′ (mod 𝑚) and another
to 𝑦3 + 𝑎𝑦 ≡ 𝑛 − 𝑛′ (mod 𝑚). To accomplish this, we solve 𝑥3 + 𝑎𝑥 ≡ 𝑛′ (mod 𝑝) and
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𝑦3 + 𝑎𝑦 ≡ 𝑛 − 𝑛′ (mod 𝑝) for each 𝑝 ∈ {5, 7, 11}, the set of all prime factors of the
picked 𝑚. For each 𝑝, this can be done in 𝑂(1) time, as 𝑝 = 𝑂(1). Then, we use Hensel’s
Lemma [12, Theorem 4.15] to lift the roots to the right powers of 𝑝. The total number
of times to lift the powers is 𝑂(log 𝑛) and each takes 𝑂(1) time, as 𝑝 = 𝑂(1). Finally,
we use an efficient quadratic-time algorithm for Chinese Remainder Theorem [14] to
combine the found solutions to 𝑥3 + 𝑎𝑥 ≡ 𝑛′ (mod 𝑝𝑟) and 𝑦3 + 𝑎𝑦 ≡ 𝑛 − 𝑛′ (mod 𝑝𝑟)
for each 𝑝 ∈ {5, 7, 11}, for some integer 𝑟 ≥ 1. The final step takes 𝑂(log2 𝑛) time,
dominating the total running time. To get 0 ≤ 𝑥, 𝑦 < 3𝑚∕5, we require a fix by the
following lemma Lemma 5.
Lemma 5. Let 𝑚 = 𝑝𝑟11 𝑝

𝑟2
2 ⋯ 𝑝𝑟𝑡𝑡 where 𝑝𝑖 are distinct prime numbers at least 5 and 𝑟𝑖

are positive integers for all 𝑖 ∈ [𝑡]. If (𝑚, 𝑎) = 1 and 𝑟1 ≥ 2, given a solution (𝑥0, 𝑦0) to
the congruence

𝑥3 + 𝑎𝑥 + 𝑦3 + 𝑎𝑦 ≡ 𝑛 (mod 𝑚∕𝑝1),
then in 𝑂(𝑝1) time one can obtain a solution (𝑥1, 𝑦1) to the congruence

𝑥3 + 𝑎𝑥 + 𝑦3 + 𝑎𝑦 ≡ 𝑛 (mod 𝑚)

such that 0 ≤ 𝑥1, 𝑦1 < 3𝑚∕5.

Proof. Let 𝑥1 = 𝑥0 + 𝑢(𝑚∕𝑝1) and 𝑦1 = 𝑦0 + 𝑣(𝑚∕𝑝1) for some 𝑢, 𝑣 to be determined.
To let (𝑥1, 𝑦1) satisfy the congruence

𝑥3 + 𝑎𝑥 + 𝑦3 + 𝑎𝑦 ≡ 𝑛 (mod 𝑚),

it suffices to require that
(3𝑥20 + 𝑎)𝑢 + (3𝑦20 + 𝑎)𝑣 ≡ 0 (mod 𝑝1). (4)

As stated in the proof of Lemma 3, 𝑥0 and 𝑦0 are picked so that 3𝑥20 + 𝑎 ≢ 0 (mod 𝑝1)
and 3𝑦20 + 𝑎 ≢ 0 (mod 𝑝1). Thus, we can rewrite Eq. (4) as

𝑢 + 𝜆𝑣 ≡ 0 for some 𝜆 ≢ 0 (mod 𝑝1). (5)
Thus, by setting 𝑢 as a value 𝑢0 in [𝑝], there is a unique 𝑣0 such that (𝑢0, 𝑣0) is a solution
to Eq. (5). Hence, by the Pigeonhole Principle, there exists a value 𝑢0 in [0, (𝑝1 − 1)∕2],
by setting 𝑢 as 𝑢0 the corresponding 𝑣0 also in [0, (𝑝1 − 1)∕2]. Consequently, 𝑥1 =
𝑥0 + 𝑢0(𝑚∕𝑝1) < (𝑢0 + 1)(𝑚∕𝑝1) ≤ 𝑚(𝑝1 + 1)∕(2𝑝1) ≤ 3𝑚∕5. The last inequality holds
because 𝑝1 ≥ 5.

To find (𝑢0, 𝑣0) that satisfies Eq. (5) and 𝑢0, 𝑣0 ∈ [0, (𝑝1 −1)∕2], one can enumerate
all 𝑢0 ∈ [𝑝], which takes 𝑂(𝑝1) time. ⊓⊔

2.3 Representing 𝟖𝒌+ 𝟑 as a sum of three squares
In this section, we present how to express 8𝑘+3 for any 𝑘 ≥ 1 as a sum of three squares
in 𝑂(log3 𝑛∕ log log 𝑛) time with failure probability bounded by 1∕𝑛Ω(1).

In the literature, there are two algorithms [11,8] for this task in𝑂(polylog 𝑛) time. We
opt to use the algorithm from [8] for this decomposition task, as it relies only on the Ex-
tended Riemann Hypothesis. Although its expected running time is 𝑂(log2 ∕ log log 𝑛),
to ensure a successful outcome with probability 1−1∕𝑛Ω(1), the running time increases
to 𝑂(log3 ∕ log log 𝑛), as desired.
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3 Expressing Integers as Sums of the Fewest Possible Tetrahedral
Numbers

We will prove Theorem 2 in this section by devising a linear-time algorithm for that,
given an integer 𝓁 ≥ 1, for each integer 𝑛 ∈ [1,𝓁], determine the least integer 𝑘 such that
𝑛 is a 𝑘-number. Then we report some empirical results obtained from this algorithm,
which yields Theorem 3.

Our linear-time algorithm relies on the Pollock’s conjecture and the following un-
proven Conjecture 1. However, its validity over integers in [1,𝓁] can be empirically
verified in 𝑂(𝓁) time with probability 1−1∕𝓁Ω(1). See Section 3.3 for details. This con-
jecture is motivated by an observation in [1] that almost all 4-numbers up to 4 × 1010
have value 𝑟 ≤ 30, and, more completely, our observation that the distribution of the 𝑟
values of all 4-numbers up to 1012, as depicted in Fig. 2. Besides, this conjecture holds
for all the ranges in our conducted experiments, as shown in Table 1.

Fig. 2. The distributions of 𝑟 values for all 4-numbers up to 1012.

Conjecture 1. The number of the 4-numbers 𝑛 in [1,𝓁] whose 𝑟(𝑛) = 𝑂(log 𝑛) is at least
𝓁 − 𝓁1∕3.

3.1 A Simple Linear-Time Algorithm Based on Conjecture 1 and the Pollock’s
conjecture

Our simple linear-time algorithm works as follows. To determine the least integer 𝑘
for all 𝑛 ∈ [1,𝓁] such that 𝑛 is a 𝑘-number, we need only the first 𝑂(𝓁1∕3) 1-numbers
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# 1-numbers # 2-numbers # 3-numbers # 5-numbers # 𝑛 with 𝑟(𝑛) > 68
2T 22893 231360135 892533269700 241 983
4T 5950 135938272 892566316867 0 742
6T 4175 114024249 892579370745 0 733
8T 3323 101777580 892586662215 0 725

10T 2806 93543895 892594264156 0 768
12T 2453 87465970 892597268218 0 743
14T 2194 82715101 892600240260 0 763
16T 1993 78854043 892605925192 0 678
18T 1834 75627012 892607810496 0 694
20T 1702 72871243 892611249359 0 684
22T 1592 70477495 892611703794 0 699
24T 1498 68370546 892613608688 0 718
26T 1418 66496077 892615100836 0 685
28T 1346 64810643 892616483208 0 704
30T 1284 63284787 892619064152 0 711
32T 1227 61891868 892620842289 0 705
34T 1178 60616223 892621019193 0 670
36T 1133 59437585 892621494377 0 671
38T 1091 58348054 892623074380 0 660
40T 1053 57331847 892625811511 0 733
42T 1019 56383995 892624729147 0 647
44T 987 55495820 892626082051 0 645
46T 958 54661584 892627506471 0 668
48T 930 53874411 892629429638 0 696
50T 905 53131427 892628890795 0 729
52T 881 52427429 892629999069 0 704
54T 858 51758363 892629240944 0 656
56T 838 51124557 892630608375 0 673
58T 818 50519244 892631146215 0 669
60T 799 49941156 892631761094 0 666
62T 782 49390221 892633870857 0 656
64T 765 48861174 892633446685 0 702
66T 750 48355792 892634312041 0 650
68T 734 47868742 892634383912 0 691
70T 720 47402034 892635181693 0 681
72T 707 46953191 892636150470 0 648
74T 693 46519325 892636792060 0 732
76T 682 46103203 892636618322 0 777
78T 669 45700380 892637949388 0 703
80T 658 45311135 892636248600 0 682
82T 647 44934977 892637894497 0 704
84T 637 44571423 892638390967 0 663
86T 626 44218320 892638667205 0 641
88T 617 43877585 892640243280 0 673
90T 608 43546706 892639526727 0 704
92T 599 43225186 892639595445 0 707
94T 590 42912932 892640997740 0 680
96T 582 42609741 892641631626 0 699
98T 574 42314723 892641152283 0 683

100T 566 42027949 892642642346 0 715
Table 1. The distribution of 𝑘-numbers for all positive integers up to 1014. The unreported numbers
are 4-numbers.
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because any 1-number appears later is greater than 𝓁. To obtained the first 𝑂(𝓁1∕3) num-
bers, one can use the formula of tetrahedral numbers, which takes 𝑂(𝓁1∕3) time. Then,
the computation of all 2-numbers and 3-numbers in [1,𝓁] can be done by enumerating
the sum of any three of the first 𝑂(𝓁1∕3) 1-numbers, which can be done in 𝑂(𝓁) time.

For the computation of all the 4-numbers in [1,𝓁], we proceed with the following
two steps:

– Step 1. Let 𝐴 be the indicator bit-array of all the 𝑘-numbers in [1,𝓁] for all 𝑘 ≤ 3.
Compute the logical-OR of 𝐴 with shifts by 𝛿 for all 𝛿 ∈ {0}∪{𝑇𝑖 ∶ 𝑖 ∈ 𝑂(log𝓁)}.
The logical OR of these 𝑂(log𝓁)-many 𝑂(𝓁)-bit arrays can be accomplished in
𝑂(𝓁) time because the model of computation is WordRAM where basic arithmetic
operations (including logical OR and shift) over 𝑂(log𝓁)-bit operands take 𝑂(1)
time. Let 𝐵 be the result of the logical OR. By definition, 𝐵 is an indicator bit-array
of all the 3-numbers in [1,𝓁] and all the 4-numbers in [1,𝓁] with 𝑟 = 𝑂(log𝓁).

– Step 2. By Conjecture 1, we know that 𝐵 has 𝑂(𝓁1∕3) 0-bits, each corresponding
to a 4-number with 𝑟 > Δ for some Δ = 𝑂(log𝓁) or a 𝑘-number for some 𝑘 ≥ 5.
There are 𝑂(𝓁1∕3) such numbers, and for each of them we check whether it can be
expressed as a sum of two 2-numbers. Given the sorted list of 2-numbers, determin-
ing whether 𝑘 < 5 can be done in 𝑂(𝓁1∕3𝓁2∕3) = 𝑂(𝓁) time by the standard 2-sum
algorithm. See Young tableau [2], for example. Finally, given the sorted list of 2-
numbers and 𝐴, determining whether 𝑘 < 6 can be done in 𝑂(𝓁1∕3𝓁2∕3) = 𝑂(𝓁)
time by checking if the tested number subtracted by any 2-number is a 3-number. If
any number passes all of the above tests, then it is a 𝑘-number for some 𝑘 ≥ 6. This
refutes the Pollock’s conjecture.
To sum up, we have an 𝑂(𝓁)-time algorithm as claimed in Theorem 2, assuming

Conjecture 1 and the Pollock’s conjecture.

3.2 Reducing the Space from 𝑶(𝓵) to 𝑶(𝓵𝟐∕𝟑)

The number of all 2-numbers in [1,𝓁] is 𝑂(𝓁2∕3) and the length of the indicator bit-
array 𝐴 is 𝑂(𝓁). Our approach is to divide 𝐴 into subintervals, each of length 𝑂(𝓁2∕3).
Then the algorithm Section 3 operates on 𝐴 subinterval by subinterval. Constructing 𝐴
subinterval by subinterval does not incur more running time than constructing 𝐴 entirely
at once. Because 𝐴 can be constructed by enumerating all 𝑥 in the list of 1-numbers in
[1,𝓁] and all 𝑦 in the list of 2-numbers in [1,𝓁] and summing each pair of 𝑥 and 𝑦. While
constructing 𝐴 subinterval by subinterval, for each 𝑥, we use binary search to locate the
lower- and upper-bounds of 𝑦 in the list of 2-numbers in [1,𝓁] such that 𝑥+𝑦 falls within
the current subinterval of 𝐴. Therefore, each pair of 𝑥 and 𝑦 joins at most one calculation
of one subinterval. Therefore, the total running time is 𝑂(𝓁1∕3 log𝓁 + 𝓁) = 𝑂(𝓁).

3.3 Empirical Verification of Conjecture 1

The task is to verify Conjecture 1 over integers in [1,𝓁] in 𝑂(𝓁) time. Let Δ = 𝑂(log𝓁)
be an integer. Let 𝑋 be a random variable indicating that

𝑋 =
{

1 if an integer 𝑥 sampled uniformly at random from [1,𝓁] is a 4-number with 𝑟(𝑥) > Δ
0 otherwise
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Thus, it suffices to show that
𝐸[𝑋] ≤ 𝓁−2∕3.

Let𝑆 be the sum variable ofΩ(𝓁2∕3 log𝓁) independent copies of𝑋. By Chernoff bound,
we have

Pr {|𝑆 − 𝐸[𝑆]| ≥ 𝜀𝐸[𝑆]} = 𝑒Ω(𝜀
2𝐸[𝑆]∕(2+𝜀)).

Thus, if 𝐸[𝑋] = Ω(𝓁−2∕3), Chernoff bound yields a constant approximation for 𝐸[𝑋]
with probability 1 − 1∕𝓁Ω(1). Otherwise 𝐸[𝑋] = 𝓁−2∕3∕𝑘 for some 𝑘 = 𝜔(1), setting
𝜀𝐸[𝑆] = log𝓁 also suffices to tell whether 𝐸[𝑋] < 𝓁−2∕3 with probability 1−1∕𝓁Ω(1).

As a result, one can use 𝑂(𝓁2∕3 log𝓁) independent copies of 𝑋 to verify Conjec-
ture 1. Evaluating a copy of 𝑋 takes 𝑂(Δ) time if 𝐴 is given, which takes 𝑂(𝓁) time to
prepare.

3.4 Verification of the Pollock’s Conjecture Up to 𝟏𝟎𝟐𝟏

Given our result in Table 1, we know that there are only 241 5-numbers in [1, 1014].
Thus, for every two consecutive tetrahedral numbers 𝑇𝑖 and 𝑇𝑖+1 whose difference is
at most 1014, one can conclude that all numbers between 𝑇𝑖 and 𝑇𝑖+1 are 𝑘-numbers
for some 𝑘 ≤ 5 except for 𝑇𝑖 + 𝑥 for all 𝑥 in the set of 241 5-numbers. However, these
exceptional numbers all fall within [𝑇𝑖−1, 𝑇𝑖−1+1014] (but not exceptional numbers w.r.t.
𝑇𝑖−1) for each sufficiently large 𝑖. This yields a proof of Theorem 3. This technique is
introduced in [1].

4 Conclusion

In this paper, we devise two algorithms to decompose integers as sums of few tetrahedral
numbers. Our results leave some interesting directions to further explore.

The algorithm in Section 2 is the first one for decomposing integers into sums of
at most eight tetrahedral numbers in time polynomial in the input size, assuming the
extended Riemann hypothesis. This assumption can be removed if the decomposition
of integers into three squares, a building block of this algorithm, can be done efficiently
without assuming ERH. A natural question to ask is whether ERH is truly necessary for
this task.

Our second algorithm relies on an assumption on the distribution of 𝑟 values. We
also wonder whether the correctness of assumption can be rigorously proved.
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A More Tables

n 𝑟(𝑛) n 𝑟(𝑛)) n 𝑟(𝑛))
837293 96 14780388803 69 30404017737 81

1751787 81 16212264602 81 31249750702 71
468164933 69 16490211457 71 31391571118 84
725334878 70 18131378533 71 31413964447 71
726409283 69 18685629958 75 31720955863 69

1872385653 79 21042275158 69 31820242053 72
1999255043 74 21282661867 71 32783549982 76
2390056433 72 21400673177 71 33723523927 78
3281447262 70 21909670998 76 33792979677 73
4269476262 70 22491659283 69 34001374367 70
5631140023 72 23084057267 69 34085489982 72
6240760377 70 23547651727 71 34118155573 71
6349723882 70 24041633103 69 34492104467 73
8798752737 71 24218940783 81 35040177258 71
9074616777 76 25902476693 69 35248597663 69
9518151603 71 26867883863 69 35780935678 72

10873443037 69 27429950322 70 37306165122 71
11332666483 80 28488454738 70 38970420417 71
12115559363 71 28954173022 71 38978879802 98
12636741707 72 29020094637 70 39282652547 74
12709829722 71 29375497387 71 39389678018 75
13646925297 73 30106439547 81 39981386443 69
14533010753 75 30224854987 69

Table 2. Errata.


	 Efficient Algorithms for Decomposing Integers as Sums of Few Tetrahedral Numbers 

